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Abstract. The non-stationary Josephson (I1-), and quasiparticle (J -) currents through
symmetrical and non-symmetrical tunnel junctions involving superconductors with charge-
density waves were calculated. In both cases the voltage dependences of the currents have
logarithmic singularities and jumps at positions determined by the non-trivial combinations
of the superconducting,1, and dielectric,6, order parameters. The currentJ in non-
symmetrical junctions is an asymmetrical function of the voltage, and depends on the sign
of 6. For symmetrical junctions this current may be either symmetrical or not, depending on
the relationship between the signs of the6s on either side of the junction.

1. Introduction

The superconducting coherent state was long ago recognized as a state with so-called off-
diagonal long-range order (ODLRO), this concept being closely connected with the existence
of Gor’kov’s anomalous Green’s functionsF(p, ωn) [1]. Here ωn = (2n + 1)πT , n =
0,±1,±2, . . . , T is the temperature, ¯h = kB = 1, and h̄ and kB are Planck’s and
Boltzmann’s constants respectively. On the other hand, for the primordial electron spectra
of metals involving congruent (nested) Fermi surface (FS) sections, the electron–hole
correlations below some critical temperatureTd can lead to the existence of a distorted
state [2, 3] which corresponds to diagonal long-range order (DLRO), and can appear due to
electron–phonon or Coulomb interactions. In particular, electron–hole attraction may result
in the appearance of the so-called excitonic insulator state of condensed matter, which
separates semiconducting and semimetallic phases at lowT . The excitonic state has been
recently discovered in certain rare-earth compounds [4]. Four types of DLRO are possible,
according to the properties of the order parameter in the low-T phase [2]. But only two
of them have been realized so far in experiment: charge-density waves (CDWs) [5, 6]
induced by spin-singlet electron–hole pairing, and spin-density waves (SDWs) [7] induced
by spin-triplet antiferromagnetic pairing. The transport properties of the ‘dielectrized’
distorted phase depend on the degree of FS gapping: if the gapping is complete, the
substance becomes an insulator belowTd ; otherwise it remains metallic but with lower
conductivity. Coexistence of DLRO and superconducting ODLRO in the case of partial
‘dielectrization’ has been observed for many classes of materials [5, 8, 9]. For instance, there
is experimental and theoretical evidence for the existence of CDWs in the superconducting
state of high-Tc oxides [10]. For example, electron diffraction measurements [11] revealed
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CDW existence belowTd = 69 K in the low-temperature tetragonal (LTT) phase of
La1.875Ba0.125CuO4, and belowTd = 104 K in thepccn state of the orthorhombic system
of La1.885Sr0.115CuO4. For La1.880−yNdySr0.120CuO4 CDWs were found in thepccn phase
which is stable whenT < Td1 ≈ 100 K, as well as for the LTT phase emerging in the
rangeTd1 < T < Td2 ≈ 150 K. CDWs have also been observed by the scanning tunnelling
microscopy (STM) technique in YBa2Cu3O7−y [12].

In this connection, one should also mention the popular scenario [13] of atom
rearrangement caused by the electron–phonon interaction due to a Van Hove singularity
of the electron density of states inherent to two-dimensional structures. This mechanism
of structural instability is, however, not universal. That is, it may be realized in highly
anisotropic substances, e.g., in 214 and 123 superconductors, but not in distorted cubic
solid solutions generated from BaBiO3. Nevertheless, the Van Hove singularity approach
can be regarded as a semi-microscopical justification for the considerations presented in this
article.

We use here the simple Bilbro–McMillan model [14] of the phase coexistence where only
a nested part of the FS is ‘dielectrized’ forT < Td . At the same time, the superconducting
isotropic gap1 emerges for the whole FS forT < Tc, and the Fermi level liesinside
the dielectric gap region. The theory of CDW superconductivity [8–10, 15] based on the
model introduced in [14] made it possible to explain many superconducting and normal-state
properties of structurally unstable substances. Given partially ‘dielectrized’ superconductors,
it is natural to assume that the emerging CDW severely affects the tunnelling of normal
electrons and Cooper pairs. The dependences of the stationary critical Josephson currentIc
on T , the dielectric gap magnitude, and the nested fraction of the FS have been obtained
in [16]. It turned out that the normalized functionIc(T )/Ic(0) versusT/Tc does not differ
substantially from the classical Ambegaokar–Baratoff curve [17]. At the same time, the
amplitude ofIc(T ) is strongly reduced with the increase of the nested FS fraction and the
magnitude of the dielectric gap.

In this paper we investigate the more involved case of the non-stationary Josephson
effect in tunnel junctions with one or both electrodes being CDW superconductors. The
amplitudes of the Josephson (I 1-), pair–quasiparticle interference (I 2-), and quasiparticle
(J -) currents through tunnel junctions are calculated.

2. Partially ‘dielectrized’ superconductors

The model Hamiltonian of the partially gapped (partially ‘dielectrized’) CDW super-
conductor has the form [14, 18]

H = H0+HMF. (1)

Here

H0 =
3∑
i=1

∑
pα

ξi(p) a
†
ipα aipα (2)

is the free-electron Hamiltonian. The operatora†ipα (aipα) is the creation (annihilation)
operator of a quasiparticle with a quasimomentump and spin projectionα from the ith FS
section. The summation indexi denotes different FS sections. That is,i = 1 andi = 2 for
the nested sections where the electron spectrum is degenerate:

ξ1(p) = −ξ2(p+Q) (3)
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whereQ is the CDW vector, whilei = 3 for the rest of the FS, where the dispersion
relation for elementary excitations is described by the different functionξ3(p).

The mean-field termHMF in the Hamiltonian (1)

HMF = HBCS+HCDW (4)

is the sum of the BCS term

HBCS= −1
3∑
i=1

∑
p

a
†
ip↑ a

†
i,−p,↓ + HC (5)

which is responsible for the superconductivity, and the CDW term

HCDW = −6
2∑
i=1

∑
pα

a
†
ipα ai,p+Q,α + HC (6)

describing the electron–hole excitonic pairing. It is sufficient [19] to use the mean-field
simplified version (5) of the original BCS Hamiltonian [1], because all of the correlation
effects are neglected here from the very beginning. On the other hand, the mean-field term
(6) replaces the sum of the Coulomb electron–hole attraction [2, 3] and the electron–phonon
interband interaction [3], thus describing the excitonic insulator and the Peierls insulator
simultaneously (see also references [15, 20–22]). The effective interaction matrix element
which is responsible for the excitonic (Peierls) pairing determines the dielectric order
parameter6 implicitly, the approach based on equation (6) becoming phenomenological.

The dielectric order parameter6 emerges on the nested FS sections, so the summation in
equation (6) is carried out over them only. In contrast, the superconducting order parameter
1 appears over the entire FS. We should stress that the existence of asingle1 for the
multisectional FS is the consequence of a strong mixing between different branches of the
electron spectrum, when all matrix elements of the four-pole electron–electron interaction
are assumed to be equal [14, 15, 21]. In this case, the effective coupling constants for1

and6 are different [21, 20], so they can be considered as independent phenomenological
functions ofT and their forms and magnitudes are to be extracted from experiment.

If the mixing is of intermediate strength, there are equal superconducting order
parameters,11 = 12, on the nested FS sections, and a dissimilar one,13, on the
non-degenerate FS section [20]. At the same time, the Cooper pairing of quasiparticles
from the sections 1 or 2, on the one hand, and their counterparts, on the other hand, is
not essential, because the sections are non-congruent and the corresponding interaction
matrix elements are small. In the framework of this approach, a multiple-component order
parameter has been recently proposed [23] for high-Tc oxides using the anisotropic tight-
binding approximation for the electron spectrum in order to explain the photoelectron data,
revealing the superconducting gap anisotropy [24, 25]. For the problem studied here, such a
generalization can only lead to much more cumbersome expressions, but the main features
found below will remain unaltered. However, the concept of different coexisting1i may
be in doubtper sefor dirty superconductors such as oxide ceramics, due to the impurity
isotropization of the superconducting order parameter [1, 26]. That is why only the limiting
case of strong mixing with a single1 is considered here.

The order parameter6 in equation (6) is real with either sign. For each sign the shape
of the current–voltage characteristic (CVC) for tunnel junctions is different [18, 27, 28].
On the other hand, the stationary Josephson current [16] and the thermodynamic quantities
for partially ‘dielectrized’ superconductors [15] do not depend on the sign of6. The
temperature dependence of6 is generally unknown. At the same time, for all actual CDW
superconducting substances discussed here, the inequalityTd > Tc (or evenTd � Tc) holds.
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Therefore, the exact form of the function6(T ) is not crucial for the determination of the
1(T ) dependence. Moreover, the calculations of Bilbro and McMillan [14] showed that
belowTc the superconducting gap1 stabilizes the magnitude of6 at a certain constant level.
Taking into account the above-mentioned circumstances, we did not perform self-consistent
calculations of1(T ) and6(T ) in this paper. Instead, we suggested for6(T ) either a
trivial constant behaviour or a BCS behaviour, the latter inherent to the basic mean-field
excitonic [3] or Peierls [5] scenarios.

The normal Gαβ

ij (p;ωn) and anomalousFαβij (p;ωn) Matsubara Green’s functions
corresponding to the Hamiltonian (1) can be found from the Dyson–Gor’kov equations
obtained earlier. They are matrices in the space which is the direct product of the spin
space and the isotopic space of the FS sections [15]. If one makes allowance for the matrix
structure of the order parameters which is implicitly contained in equations (5) and (6), the
following expressions can be obtained:

Gnd(p;ωn) = − iωn + ξ3(p)

ω2
n +12+ ξ2

3 (p)
(7)

Fnd(p;ωn) = 1

ω2
n +12+ ξ2

3 (p)
(8)

Gd(p;ωn) = − iωn + ξ1(p)

ω2
n +12+62+ ξ2

1 (p)
(9)

Fd(p;ωn) = 1

ω2
n +12+62+ ξ2

1 (p)
(10)

Gis(p;ωn) = − 6

ω2
n +12+62+ ξ2

1 (p)
. (11)

Here the subscriptnd corresponds to the ‘non-dielectrized’ part 3 of the FS,d to the nested
(‘dielectrized’) parts 1 and 2, andis to the intersection excitonic (electron–hole) pairing
between the quasiparticle from part 1 and theQ-shifted quasiparticle from part 2. We note
that the Green’s functionFis is identically zero for CDW superconductors.

3. Tunnel currents

To calculate the total tunnel currentI through the junction we employ the conventional
approach [17, 29] based on the junction Hamiltonian

Hjun = H+H′ + T . (12)

The left- and right-hand-side electrodes of the junction are described in equation (12) by the
termsH andH′, respectively, which coincide with the Hamiltonian (1) with an accuracy
of notations. Hereafter primed entities including subscripts and superscripts correspond to
the right-hand side of the junction. The tunnel termT has the form

T =
3∑

i,i ′=1

∑
pq′α

Tii
′
pq′a

†
ipαai ′q′α + HC (13)

where theTii
′
pq′ are the tunnel matrix elements. The general expression forI (T ) obtained

in the second order of the perturbation theory inT is a sum of terms:

Iiji ′j ′ ∝
∑
pq′

Tii
′
pq′T

jj ′∗
pq′

∫ τ

−∞
dτ1 {F ∗ij (p, τ − τ1)F

+∗
i ′j ′ (q

′, τ − τ1)
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− F+ij (p, τ − τ1)Fi ′j ′(q
′,τ − τ1)+Gij (p, τ − τ1)Gi ′j ′(q

′,τ − τ1)

− G∗ij (p, τ − τ1)G
∗
i ′j ′(q

′,τ − τ1)} (14)

where F(p, τ ) and G(p, τ ) are temporal Green’s functions, and the asterisk denotes
complex conjugation.

We assume that all matrix elementsTii
′

are equal and not influenced by the existence
of the superconducting and dielectric gaps, so that

Tii
′
Tjj

′∗ = constant= |T|2. (15)

This approximation is analogous to the neglect of the influence of the gap1 on |T|2 in the
standard Ambegaokar–Baratoff approach [17]. Our assumption is natural in the framework
of the BCS-type scheme, i.e., in the case of a weak coupling for Cooper and zero-channel
pairings. The weak-coupling approach is valid for the latter if the inequalityEF� 6 holds,
whereEF is the Fermi energy. Then we can introduce the universal tunnel resistanceR:

R−1 = 4πe2N(0)N ′(0)〈|T|2〉FS (16)

whereN(0) andN ′(0) are the total electron densities of states for left- and right-hand-side
metals. They are the sums of the densities of states for ‘dielectrized’ and ‘non-dielectrized’
parts of the FS. For example,N(0) = Nd(0)+Nnd(0). The ratio

ν = Nnd(0)/Nd(0) (17)

characterizes the degree of ‘dielectrization’ of the metal. A similar parameterν ′ can be
introduced also for right-hand-side metal. Angle brackets〈· · ·〉FS in equation (16) imply
averaging over the FS. In performing such an averaging it is assumed that the Fermi
momentumkF is the same for d- and nd-FS sections for each superconductor [14, 15].

One should bear in mind that it is the set of Green’s functions (7)–(11) that makes
a contribution when calculating the tunnel currentI across the junction. Then for the
case when an ac voltageV (τ) ≡ Vright(τ ) − Vleft(τ ) across the Josephson junction varies
adiabatically slowly as compared with the energies of the order ofTc, i.e.,V −1 dV/dτ � Tc,
and taking into account the symmetry of the problem, we obtain expressions which are
generalizations of those for the BCS superconductors [29]:

I [V (τ)] =
4∑
i=1

[I 1
i (V ) sin 2φ + I 2

i (V ) cos 2φ] +
9∑
i=1

Ji(V ) ≡
4∑
i=1

Ii(V )+
9∑
i=1

Ji(V ) (18)

whereφ = ∫ τ eV (τ) dτ . HereI 1 =∑4
i=1 I

1
i is the Josephson current,I 2 =∑4

i=1 I
2
i is the

pair–quasiparticle interference current, andJ = ∑9
i=1 Ji is the quasiparticle current. The

quantitiesI 1,2
i and Ji are functionals of the Green’s functionsFij (ω) andGij (ω), which

are in turn the Fourier transforms of the time-dependent Green’s functionsFij (p, τ ) and
Gij (p, τ ) from equation (14), integrated overp. The explicit expressions forI 1,2

i andJi
are given in appendix A.

When obtaining equation (18), we made an implicit suggestion of strong pinning of the
CDWs (e.g., by impurities or the host crystal lattice), so their phasesχ1 andχ2 on either
side of the junction are fixed. At the same time, in the framework of the fundamental
generic models of the dielectric pairing, e.g., for the Peierls insulator [5], the phase of the
CDW (and consequently the phaseχ of the order parameter6 ≡ |6| exp(iχ)) is arbitrary.
This fact leads, in particular, to the Fröhlich sliding-wave conductivity [5, 30].

Pinning prevents sliding in Peierls quasi-one-dimensional compounds for small electric
fields, whereas for large fields various coherent phenomena of the Josephson type become
possible. For excitonic insulators produced by the combined action of the Coulomb and



3906 A M Gabovich and A I Voitenko

electron–phonon interactions, and thus being more adequate approximations to the real
substances, the behaviour is more involved. In particular, the phase is fixed by Coulomb
interband matrix elements (linking FS sections 1 and 2) corresponding to two-particle
transitionsV2, and the interband electron–phonon interaction determined by the constant
λe−ph [2, 3, 31, 32]. Moreover, the excitonic transitions due to the finite values ofV2

and λe−ph are always of the first order although close to the second-order transitions
[32, 33]. The contributions from single-particle Coulomb interband matrix elementsV3,
which connect three particles from, say, FS section 1 and one particle from FS section 2, or
vice versa, result in even more radical consequences. Namely, the self-consistency equation
for the order parameter6 becomes non-homogeneous, with the right-hand side proportional
to V3. This leads to the fixing of the phaseχ [22]. A similar equation was obtained earlier
for the semiconductor band gap in strong electromagnetic fields [34].

A consideration of the quasiparticle tunnel currentJ (V ) between two Peierls insulators
with free phasesχ1 and χ2 in the absence of superconductivity and for complete
‘dielectrization’ was carried out in reference [35], whereas in the case of fixedχ1 and
χ2, and partial ‘dielectrization’,J (V ) was calculated by the present authors [18]. An
attempt to generalize the results [35], taking into account the finite strength of the insulating
barrier potential at the interface in the spirit of the model given in [36] for superconductors
has been recently made in reference [37]. However, the final expressions for currents in
references [35, 37] are quite different, and in addition the treatment in [37] does not include
erroneously the contribution of the Andreev-like [38] reflection, for which allowance should
be made in CDW-based junctions [39].

4. Current–voltage characteristics

The equations of appendix A can be simplified for two important particular cases: (i) the
symmetrical S–I–S case in which the CDW superconductors (S) to the left and to the right
of the interlayer (I) are identical; and (ii) the non-symmetrical case S–I–SBCS in which one
of the electrodes is an ordinary BCS superconductor (SBCS) or a normal metal (of course,
in the latter situation, only the quasiparticle currentJ remains).

For the symmetrical junctionν ′ = ν, and the number of independent Green’s functions
is reduced substantially:

F11 = F ′11 ≡ Fd F33 = F ′33 ≡ Fnd
G11 = G′11 ≡ Gd G12 = G′12 ≡ Gis G33 = G′33 ≡ Gnd.

(19)

Then equation (18) can be rewritten as

Is =
3∑
i=1

Isi(V )+
4∑
i=1

Jsi(V ) (20)

where

Is1 = I1 Is2 = I2+ I3 Is3 = I4

Js1 = J1 Js2 = J4 Js3 = J5+ J7 Js4 = J9.
(21)

The currentsJ2 andJ3 as well asJ6 andJ8 compensate each other.
In the non-symmetrical case,N ′d(0) = 0, so, according to equation (17),ν ′ = ∞. Only

the following Green’s functions are inherent to this junction:

F11 ≡ Fd F33 ≡ Fnd F ′33 ≡ F ′
G11 ≡ Gd G12 ≡ Gis G33 ≡ Gnd G′33 ≡ G′.

(22)
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HereF ′ andG′ are the Green’s functions of the BCS superconductor which can be formally
obtained fromFnd andGnd with the BCS order parameter1BCS(T ) substituted for1(T ).
Then the total current through the junction considered is

Ins =
2∑
i=1

Insi(V )+
3∑
i=1

Jnsi(V ) (23)

where

Ins1 = I2 Ins2 = I4

Jns1 = J5 Jns2 = J6 Jns3 = J9.
(24)

If the right-hand-side electrode is normal metal,1BCS ≡ 0, and as a consequenceF ′ ≡ 0
andInsi(V ) ≡ 0.

The Green’s functions (19) and (22) are related to their Matsubara counterparts (7)–(11)
in the following manner. First, the thermal functionsFd,nd(p;ωn) andGd,nd,is(p;ωn) are
integrated over the momentump, and the analytical continuation is made to the real axis
of the variable iωn [1]. The result is

GR
nd(ω) = −

πω√
12− (ω + i0)2

(25)

F̃nd(−iω) = π1√
12− (ω + i0)2

(26)

GR
d (ω) = −

πω√
D2− (ω + i0)2

(27)

F̃d(−iω) = π1√
D2− (ω + i0)2

(28)

GR
is(ω) = −

π6√
D2− (ω + i0)2

. (29)

HereD = (12+62)1/2 and the superscriptR reflects the retarded character of the Green’s
functions. The respective functions for the right-hand-side superconductor(GR)′(ω) and
F̃′(−iω) can be obtained fromGR

nd(ω) and F̃nd(−iω) with 1(T ) replaced by1BCS(T ).
Second, the functions (25)–(29) are connected to the temporal Green’s functions from
equations given in appendix A by the dispersion relations [1, 29]

G(ω) = ReGR(ω)+ i tanh
ω

2T
Im GR(ω) (30)

iF+(ω) = −iF(ω) = ReF̃(−iω)+ i tanh
ω

2T
Im F̃(−iω). (31)

The resulting expressions for all possible currents are presented in appendix B.

5. Results of calculations

As is well known [17, 29, 40], the CVCI 1,2(V ) andJ (V ) for ordinary BCS superconductors
possess logarithmic singularities (the so-called Riedel peaks) and discontinuities at certain
voltagesV . The characters and magnitudes of the singularities for different kinds of current
are correlated due to the existence of the Kramers–Kronig relationships between them [40].
In our case of the CDW superconductors, the dependencesI 1,2(V ) and J (V ) are much
more involved than the respective curves in the conventional case owing to the existence
of two energy gaps (|6| and1) instead of one (1), and their interplay. All of the current
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components for symmetrical and non-symmetrical cases can be calculated analytically for
T = 0. The cumbersome expressions obtained are analogous to the results in the framework
of the BCS theory and will be presented elsewhere. WhenT 6= 0 the CVC can be calculated
only numerically. But the characteristic features can be found for arbitrary temperatures.
Below we present relevant formulas only for the Josephson and quasiparticle currents. The
types of peculiarity for the interference current are identical to those of the latter.

For symmetrical S–I–S junctions the usual symmetry relations

I 1
s (−V ) = I 1

s (V ) Js(−V ) = −Js(V ) (32)

hold, and the CVC do not depend on the sign of6. So, for definiteness, letV > 0.
The Riedel singularities of the Josephson currentI 1

s (V ) are defined by the feature points
of its components

I 1
s1(eV ≈ 2D) ≈ 1

eR(1+ ν)2
12

4D
W1(D,D) (33)

I 1
s2(eV ≈ D +1) ≈

ν

2eR(1+ ν)2
√
13

D
W1(D,1) (34)

I 1
s3(eV ≈ 21) ≈ ν21

4eR(1+ ν)2W1(1,1) (35)

where the following notation was used:

W1(11,12) =
(

tanh
11

2T
+ tanh

12

2T

)
ln

11+12

|eV − (11+12)| . (36)

Among this family of singularities, only the latter can be found in the BCS case(ν →∞).
Two others are inherent to CDW superconductors and vanish when the dielectric gapping
is absent.

At finite temperatures a new feature of Josephson currents appears:

δI 1
s2(eV = D −1) =

πν

2eR(1+ ν)2
√
13

D

(
tanh

D

2T
− tanh

1

2T

)
. (37)

Here the notationδI (eV = x) ≡ I (eV = x + 0) − I (eV = x − 0) was introduced.
One should note that this peculiarity is inherent tonon-symmetrical junctions with BCS
superconductors [40], whereas in our case it can be observed also forsymmetricalones. The
origin of this feature is the existence of two kinds of FS section with different effective gaps,
namely,D and1. Thus, Cooper pair or single-electron tunnelling between the ‘dielectrized’
FS section of one electrode and the ‘non-dielectrized’ section of another one occurs as if
the junction is asymmetric. Of course, the peculiarity at|eV | = D − 1 diminishes when
T → 0 due to the lack of the thermally induced quasiparticles below and above the gaps,
and disappears atT = 0. So, a useful test is proposed for checking the possible coexistence
of the order parameters1 and6 when other methods give uncertain results.

The CVC for the quasiparticle tunnel currentJs(V ) also changes considerably due to
the partial ‘dielectrization’ of the electron spectrum. That is, the following discontinuities
emerge:

δJs1(eV = 2D) = πD

2eR(1+ ν)2 tanh
D

2T
(38)

δJs2(eV = 2D) = − π

2eR(1+ ν)2
62

D
tanh

D

2T
(39)
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δJs3(eV = D +1) = πν
√
D1

2eR(1+ ν)2
(

tanh
D

2T
+ tanh

1

2T

)
(40)

δJs4(eV = 21) = πν21

2eR(1+ ν)2 tanh
1

2T
. (41)

The first two jumps to a great extent compensate each other, and for normal metals or
superconductors aboveTc the jump ateV = 2D disappears, as was shown earlier [18].

If T 6= 0, a logarithmic singularity ateV = D −1 appears:

Js3(eV ≈ D −1) ≈ ν
√
D1

2eR(1+ ν)2W2(D,1). (42)

Here

W2(11,12) =
∣∣∣∣tanh

11

2T
− tanh

12

2T

∣∣∣∣ ln
4(11+12)

|eV − |11−12|| . (43)

The CVC depend on two dimensionless parameters characterizing the specific substance:
ν andσ(T ) ≡ 6(T )/10. According to the discussion in section 2, the dependence6(T )

is chosen to be of the BCS type, so its value at any given temperatureT is determined by
the parameterσ0 ≡ 60/10, where60 ≡ 6(T = 0). The comparison of the results obtained
with the molecular-field constant6 and6BCS(T ) shows that the character of the difference
is not qualitative. It reveals itself only in the vicinity ofTc, and is not crucial for the further
presentation.

The family of dimensionless current amplitudesi1s ≡ I 1
s eR/10, js ≡ JseR/10, and

the quasiparticle conductancegs ≡ djs/dx versus the dimensionless biasx ≡ eV/10 are
depicted in figure 1 for various FS degrees of ‘dielectrization’ at normalized temperatures
t ≡ T/Tc0 = 0.4. HereTc0 = γ10/π is the critical temperature of the CDW superconductor
in the absence of the ‘dielectrization’ andγ = 1.78. . . is the Euler constant. The CVC
discontinuities, which are too small to be seen at the chosen scale, are shown by the double
arrows. One can see that the current and conductance magnitudes and the amplitudes of
the singularities and jumps depend drastically onν. Therefore, control over any external
parameter affecting the electronic system (e.g., the applied pressure) may help one to observe
the predicted peculiarities. It should be noted that dependence of the CVC features onν

has a twofold origin. First,ν enters the current amplitude explicitly. Second, it determines
the actual values ofTc and1 [15, 16], the latter also entering the expressions for currents.
In figure 1, curve 1 corresponds toT/Tc = 0.90 and curve 2 toT/Tc = 0.60.

We have to note that the measured CVCs will differ from the ideal ones presented
here. In particular, there always exists a certain spread of1 magnitudes over the junction
cross-section even for the single-crystal samples. One can easily show then that any
logarithmic singularity will be smeared substantially to a smooth bump. Therefore, the
minute logarithmic peaks of the type (43) will be almost averaged out, while their remnants
can survive in the derivatives. Of course, the Riedel spikes of the type (36) will also be
averaged. But they will be preserved as deformed features with finite amplitudes.

An interesting opportunity should be indicated for symmetrical junctions. Since the free
energy of CDW superconductors does not depend on the sign of6 [15, 20], it is reasonable
to assume a possibility of6 having different signs on the left- and right-hand sides of the
symmetrical junction. The choice of the sign for the dielectric order parameter6 may be
associated with tiny random interactions not included in the Hamiltonian (1). Then the CVC
of the quasiparticle currentJs(V ) for the symmetricaljunction becomesnon-symmetrical!
Really, in this case the above-mentioned compensation between the componentsJ2 andJ3

and betweenJ6 and J8 will no longer take place, and extra current componentsJs5 and
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Figure 1. Comparison of current–voltage characteristics for symmetrical S–I–S tunnel junctions
between CDW superconductors with different values ofν = Nnd(0)/Nd(0), whereNnd(d)(0)
is the electron density of states at the ‘non-dielectrized’ (‘dielectrized’) Fermi surface section:
(a) the Josephson currenti1s ≡ I1

s eR/10, (b) the quasiparticle currentjs ≡ JseR/10, and (c) the
quasiparticle conductancegs = djs/dx. HereI1

s andJs are the relevant current amplitudes,e is
the elementary charge,R is the junction resistance in the normal state,10 is the superconducting
gap at zero temperatureT = 0 in the absence of the ‘dielectrization’,x = eV/10, andV is
the applied voltage. The calculation parameters are as follows:σ0 = 1.5 is the value of
σ = 6/10 at T = 0; 6(T ) is the dielectric order parameter which obeys the BCS equation;
t = T/Tc0 = 0.4; Tc0 = γ10/π is the superconducting critical temperature in the absence of
the ‘dielectrization’; andγ = 1.7810. . . is the Euler constant. Curves 1 and 2 correspond to
ν = 0.5 and 1. Double arrows indicate the positions of discontinuities which are small on the
scale selected.

Js6 emerge in equation (20). Besides which, the componentJs2 changes its sign. The full
set of current components for such a junction with the broken symmetry is presented in
appendix C. It is remarkable that

Js5,s6(−V ) = Js5,s6(V ) (44)
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contrary to the symmetry relation given in equation (32). Moreover,Js(V ) depends now
on the sign of6. The symmetry breaking leading to the listed radical consequences is
analogous to that for magnetics [41]. Hereafter, we confine ourselves to the case in which
6 > 0 on the left-hand side and6 < 0 on the right-hand side. For the reverse situation
the CVC branches for positive and negativeV simply change places.

-3 -2 -1 0 1 2 3
-2

0

2

4

6

⇑ ⇑

broken symmetry
(a)

j s

x = eV/∆0

-3 -2 -1 0 1 2 3
-0.5

0.0

0.5

1.0

1.5

2.0

⇓

(b)

g s

x = eV/∆0

Figure 2. The dependences onx of (a) the quasiparticle currentjs and (b) the conductance
gs in the symmetrical tunnel junction with broken symmetry (6 > 0 for the left-hand side and
6 < 0 for the right-hand side of the junction). The parameters areσ0 = 1.5, ν = 0.5, and
t = 0.4.

An example of quasiparticle current and conductance dependences on the applied voltage
for a symmetrical junction with broken symmetry is shown in figure 2. It is readily seen
that the symmetrical S–I–S junctions made of partially ‘dielectrized’ superconductors may
possess essentially non-symmetricaljs(x) andgs(x). The origin of the lack of symmetry will
remain obscure for experimenters, because the input sample properties for each electrode
would seem to be identical.

It should be stressed that the unconventional breaking of CVC symmetry is impossible
for Josephson and interference currents between CDW superconductors, because the
corresponding Green’s functionFis is equal to zero.

For non-symmetrical S–I–SBCS junctions it follows from appendix B that

I 1
ns(−V ) = I 1

ns(V ) Jns1,3(−V ) = −Jns1,3(V ). (45)

But the termJns2 has the non-conventional symmetry property, namely,

Jns2(−V ) = Jns2(V ). (46)

Moreover, the CVC forJns2(V ) depends on the sign of6 which is the factor in the
relevant equation (cf. the case of broken symmetry for S–I–S junctions). This unusual
dependence is a consequence of the fact that the ‘interband’ normal Green’s functionGis

(see equation (29)) inherent to excitonic (Peierls) insulators [3] appears in equation (A4)
together with the standard (proportional toω) normal Green’s functionsGnd or Gd of
superconductors. The dependence of the quasiparticle currentJns(V ) on the sign of6 is
justified by calculations for the case of complete ‘dielectrization’ based on Bogoliubov’s
canonical transformation [28].
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The analytical expressions for the currentsI 1
nsi and Jnsi can be obtained only when

T = 0. For finite temperatures the Riedel singularities ofI 1
nsi are (1BCS is the gap of the

BCS superconductor,eV is assumed to be positive)

I 1
ns1(eV ≈ D +1BCS) ≈ 1

√
1BCS/D

4eR(1+ ν) W1(D,1BCS) (47)

I 1
ns2(eV ≈ 1+1BCS) ≈ ν

√
11BCS

4eR(1+ ν)W1(1,1BCS). (48)

The non-zero-temperature features of these currents are similar to their symmetrical
counterparts (37):

δI 1
ns1(eV = |D −1BCS|) = π1

4eR(1+ ν)

√
1BCS

D

∣∣∣∣tanh
D

2T
− tanh

1BCS

2T

∣∣∣∣ (49)

δI 1
ns2(eV = |1−1BCS|) = πν

√
11BCS

4eR(1+ ν)
∣∣∣∣tanh

1

2T
− tanh

1BCS

2T

∣∣∣∣ . (50)

As results from the symmetry properties (45) and (46), the signs of the singularities
and jumps for the quasiparticle current components are different for positive and negative
voltages. Here we shall present them only forV > 0, the effects forV < 0 being the direct
consequence of equations (45) and (46):

δJns1(eV = D +1BCS) = π
√
D1BCS

4eR(1+ ν)
(

tanh
D

2T
+ tanh

1BCS

2T

)
(51)

δJns2(eV = D +1BCS) = π6

4eR(1+ ν)

√
1BCS

D

(
tanh

D

2T
+ tanh

1BCS

2T

)
(52)

δJns3(eV = 1+1BCS) = πν
√
11BCS

4eR(1+ ν)
(

tanh
1

2T
+ tanh

1BCS

2T

)
. (53)

Provided that6 > 0 and according to the symmetrical properties (45) and (46), the jumps
δJns1 and δJns2 are added forV > 0, while for V < 0 they are subtracted, the situation
being the inverse of this for6 < 0. Thus, one CVC branch possesses a large jump
at eV = D + 1BCS, while for another one the two contributions (51) and (52) almost
compensate each other, because usually6 � 1 and henceD ≈ 6 (see, e.g., [5, 8, 9]).

The opposite relationship takes place for logarithmic singularities of the currentsJns1,ns2
at eV = |D −1BCS| emerging whenT 6= 0:

Jns1(eV ≈ |D −1BCS|) ≈
√
D1BCS

4eR(1+ ν)W2(D,1BCS) (54)

Jns2(eV ≈ |D −1BCS|) ≈ −6
√
1BCS/D

4eR(1+ ν) W2(D,1BCS). (55)

Here the approximate compensation of peaks is achieved forV > 0 when6 is positive,
whereas foreV = −|D −1BCS| the right-hand side of equation (55) changes its sign and
the peaks enhance each other. The conventional singularity ateV = |1−1BCS| is retained
for CDW superconductors:

Jns3(eV ≈ |1−1BCS|) ≈ ν
√
11BCS

4eR(1+ ν)W2(1,1BCS). (56)

The predicted features (47)–(56) are reproduced in numerical calculations. For the sake
of definiteness, we assume that6 > 0. In figure 3 the bias dependences of the normalized
total currentsi1ns ≡ I 1

nseR/10, jns ≡ JnseR/10, and the conductancesgns ≡ djns/dx
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Figure 3. As figure 1, but for non-symmetrical S–I–SBCS junctions, where SBCS is an ordinary
BCS superconductor with the gap1BCS, andε0 ≡ 1BCS(T = 0)/10 = 2, 1, 0.5 (curves 1–3,
respectively). σ0 = 1.5, ν = 1, t = 0.4. Single arrows indicate the positions of logarithmic
singularities which are hardly seen on the scale selected.

are shown for various values of the ratioε0 ≡ 1BCS(T = 0)/10. The small logarithmic
singularities which are hard to detect because of their magnitudes are marked by single
arrows. One can clearly see the absence of definite symmetry for quasiparticle currents,
and, in particular, the difference in discontinuities for the two CVC branches.

The results obtained differ essentially from those of [28] dealing with the same subject.
This is a direct consequence of the principal distinction between the problem formulations.
Within the framework of the Bilbro–McMillan model [14] used here, we assume the zero
value of the parameterµ(p) which describes the deviations of the FS nested sections
from congruency, and is associated with the doping of the hypothetical material with the
completely nested and hence completely ‘dielectrized’ FS [3]. Therefore, the chemical
potential level in our model appears to be located inside the dielectric gap. But the system
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remains a metal because a ‘non-dielectrized’ FS section is retained with the quasiparticle
dispersion lawξ3(p). In the contrast, in [28] it is assumed thatµ(p) 6= 0, and the FS ‘non-
dielectrized’ section is absent altogether. Then the Fermi level lies outside the dielectric
gap.

6. Discussion

The results presented above are of quite general character due to the phenomenological
nature of our approach. The main obstacle which makes it difficult to obtain direct
predictions for specific compounds is the absence of reliable parameter estimations,
especially as regards the gapped FS fraction described byν. The only exception is for the
quasi-one-dimensional substance NbSe3 [5]. Here superconductivity appears under pressure
when the low-temperature CDW transition into the incommensurate state is suppressed,
while the commensurate CDW distortion is still retained. The asymmetrical quasiparticle
tunnelling conductivity was actually observed in planar Pb–I–NbSe3 tunnel junctions [42],
together with the insufficiency of the explanation [43] in the framework of the model [44]
which takes into account the coupling energy in the transverse direction.

We would also like to call attention to the Andreev scattering experiments at the interface
between Au and the non-superconducting Peierls insulator K0.3MoO3 which revealed the
strong asymmetry ofg−1

ns (x) [45].
The most intriguing issue is the validity of the concept outlined here for high-Tc

oxides. It is worth noting that structural transitions in the overwhelming majority of high-
Tc superconducting oxides occur atTd > Tc. In some of them a dielectric gap (or at
least its manifestations) in the FS parts is also observed. Thus, in BaPb1−yBiyO3 (BPB)
for y > 0.35 the electron spectrum ‘dielectrization’ is complete, and superconductivity
is absent, whereas fory < 0.35 the electrical conductivity has a metallic character and
superconductivity appears atTc = Tc(y). Partial ‘dielectrization’ of the metallic state
develops wheny > 0.15; this is proved by a number of anomalies in the BPB properties
[8, 15, 46]. But the most direct evidence for the existence of the order parameter6 in BPB
is provided by the light reflection spectra for the BPB ceramics [47]. The authors explain
their results in terms of the frequency-dependent dielectric functionε(ω) which does not
have simple Drude-like character. In contrast,ε(ω) involves a gap-type contribution, being
the direct consequence of the6 formation on the definite FS sections (a ‘pseudogap’). The
most probable source of the electron spectrum ‘dielectrization’ in BPB is the emergence of
CDW induced by the alternation of the Bi3+ and Bi5+ states [8, 48].

For the BPB oxide withT max
c = Tc(y = 0.25) ≈ 13 K, the values of6 extracted

from the thermodynamic and resistive data are estimated approximately as6 > 50–100 K
[8]. Experimental data on the peculiarities of the quasiparticle currents through BPB-based
junctions are also available. According to [49], the gap-edge voltage grows with increasing
y and reaches a levelVup at y > 0.2 for which the ratioVup/Tc is equal to the BCS
weak-coupling value1(T = 0)/Tc = π/γ [1]. On the other hand, in BPB withy = 0.25,
gap features appear in the bias range 60–100 K of tunnel characteristics, depending on
the sample and the estimation method [50]. However, theTc-values in [49, 50] virtually
coincide. The results of [50] can be understood on the basis of our theory. In this case
the smaller gap1min is likely to be indistinguishable against the background of the larger
one1max. This could be associated with a smearing of the anomaly corresponding to the
dielectric gap6 ≡ 1max due to the averaging of the contributions to the total current
J (V ) from areas with different values of6. A possible source of the6 magnitude spread
may be the chemical inhomogeneities of the grain boundaries mentioned above [8, 51].
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Nevertheless, the question is far from receiving a final solution.
The FS of the solid solutions Ba1−yKyBiO3 (BKB), like in the BPB case, contains nested

sections for arbitraryy that lead to CDW formation [52, 53]. The possibility of the existence
of 6 in the superconductingy-compositions can be inferred from the observed positive
curvature [54] of the dependence of the upper critical magnetic fieldHc2 on T nearTc
common to partially ‘dielectrized’ superconductors [15] (see also the discussion in reference
[55]). The light reflection spectra [56] for the superconducting single crystals Ba0.6K0.4BiO3

confirm this point of view: the ac conductance reveals the same finite-gap non-Drude
contribution as for BPB [47]. Direct evidence that incommensurate CDW modulations do
exist in superconducting BKB(x > 0.37) was obtained in electron diffraction experiments
[57]. In tunnel CVC of superconducting BKB samples one gap feature was revealed [58].
In order to reconcile these data with the evidence for the6 and1 coexistence, one may
adopt the hypothesis [56] of the percolative nature of the non-cubic semiconducting BKB
phase in bulk superconducting crystals.

Now let us turn to high-Tc cuprate oxides. The most thoroughly studied among them are
the 214 and 123 systems withTc ≈ 40 K and 90 K, respectively. Electron band-structure
calculations show that in La2CuO4-based layered perovskites and in the YBa2Cu3O7−y
superconductor there are congruent FS sections [59]. TheT –y phase diagrams of these
compounds, wherey denotes the content of the doping metal (Ba, Ca, Sr) for the 214
system or the oxygen concentration for the 123 system, involve various structural transitions,
even in a close neighbourhood ofTc. As was mentioned in the introduction, the CDW
reflections weredirectly observed by means of electron diffraction for the compounds
La2−x [Ba(Sr)]xCuO4 and La1.880−yNdySr0.120CuO4 [11], and by the STM technique for
Cu–O chains in YBa2Cu3O7−y [12].

Structural phase transitions take place also in Bi-based high-Tc materials. Thus, ultra-
sound attenuation measurements [60] show that in Bi2Sr2CaCu2O8 with Tc = 84 K there
are structural anomalies atTd = 95 K and 250 K, while in Bi–Sr–Ca–Cu–Pb–O with
Tc ≈ 107 K the anomalies are atTd = 130 K and 250 K. The corresponding dielectric gap
|6| seems to have already been observed in the angle-resolved photoemission experiments
[25] on underdoped samples of oxygen-depleted Bi2Sr2CaCu2O8+δ (Tc ≈ 67 K) near the
(π, 0) point in the Brillouin zone.

It should be noted that the so-called pseudogap state in various underdoped high-Tc
oxides—the subject of the recent concentrated experimental attack [61]—may originate
from the dielectric gapping (in the spirit of the earlier approach [10]) rather than from a
superconducting pairing of the still unclarified nature. Thus our suggestion can explain the
genesis of the almostT -independent ‘superconducting gap’ aboveTc in the underdoped
samples of Bi2Sr2Ca1−xDyxCu2O8+δ [62].

Tunnel and point-contact spectroscopies, as well as STM, have shown the high-Tc
superconductor quasiparticle CVCs to deviate substantially from those calculated in the
framework of the BCS theory. Unfortunately, the gap values extracted from the differential
conductivitiesGdiff

s(ns) = dJs(ns)/dV differ for the same substance when measured by various
groups [63, 64]. This undesirable situation may be due not only to the poor quality of the
samples and junctions, but also to intrinsic phenomena in oxides connected to their thermal
history [8].

The main unusual properties that are often observed for different cuprates are as follows.
A two-gap structure is revealed in point-contact CVC of La2−ySryCuO4 [63], in tunnel CVC
of YBa2Cu3O7−y [65], in point contacts of YBa2(Cu1−yZny)3O7 [66], and in break junctions
of Yb(Y)Ba2Cu3O7−y [67]. With the help of the STM technique, the complex gap-like
structure ofGdiff

ns (V ) was discovered for Bi2Sr2CaCu2Oy [68]. Two kinds of gap peculiarity
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at eV ≈ 21 meV and 51 meV were revealed in HgBa2Ca2Cu3O8−y with Tc ≈ 132 K, both
in STM and in point-contact experiments [69]. We think that in view of the facts presented
above and concerning the existence of the structural transitions in cuprates, our theory can
be applied to explain the gap properties of tunnel and point-contact characteristics. In
doing this, the larger gap should be identified withD = (12 +62)1/2. This assumption is
supported by the tunnel measurements on the symmetrical sandwich involving Bi–Sr–Ca–
Cu–O withTc ≈ 75 K [70]. There the larger gap singularity ofGdiff

s weakly depends onT
up toTc and disappears aboveTc. Such a behaviour can be explained if the curve6(T ) has
a non-BCS form close to rectangular (this is approximately true when the ratio6(0)/Td is
well above the BCS valueπ/γ ), andTd is slightly higher thanTc.

The other feature inherent to high-Tc oxides is the asymmetry of the CVC with respect
to the voltage polarity. The types of phenomenon may be different; e.g., in the STM
measurements ofJns(V ) for Bi2Sr2CaCu2O8+y a dip was observed inGdiff

ns only for V < 0
[71]. When the Bi-based ceramics constituted a two-phase mixture withTc ≈ 85 K and
110 K, the tunnel measurements revealed a similar dependence of the CVC on the sign ofV

[72]. Asymmetric CVCs were observed for YBa2Cu3O7−y by STM [12, 73]. Finally, point-
contact and STM spectra for HgBa2Ca2Cu3O8−y also showed an asymmetric character [69].
The observed dependences of theJns(V ) form on the voltage polarity may be considered as
a direct consequence of our equations (B7b) if one takes into account the existing electron
spectrum ‘dielectrization’ of cuprates.

To summarize, we should stress that it is impossible now to compare our theory for
Josephson currentsI 1(V ) with experiment, because Riedel singularities of the CVC for
junctions involving CDW superconductors have not yet been investigated. All the same,
the unconventional properties ofJ (V ) observed for many substances (see above) make
parallel measurements ofI 1(V ) very interesting.
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Appendix A

The expressions for the CVC ofI 1,2
i (V ) andJi(V ) in the general case of a junction between

two different partially ‘dielectrized’ superconductors are (to be compared with [29]) as
follows. We use the notationF ′ij ≡ Fi ′j ′ andG′ij ≡ Gi ′j ′ .

For Josephson(j = 1) and interference(j = 2) currents

I
j

1 = ϕj (F+11, F
′
11) I

j

2 = ν ′ϕj (F+11, F
′
33)

I
j

3 = νϕj (F+33, F
′
11) I

j

4 = νν ′ϕj (F+33, F
′
33)

(A1)

ϕ1(F
+
ij , F

′
mn) =

1

2π3eR(1+ ν)(1+ ν ′) Re

{
i
∫ ∞
−∞

dω
∫ ∞
−∞

dω′
Im[F+ij (ω)F

′
mn(ω

′)]

ω + ω′ + eV + i0

}
(A2)
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ϕ2(F
+
ij , F

′
mn) = −

1

2π3eR(1+ ν)(1+ ν ′) Re

{∫ ∞
−∞

dω
∫ ∞
−∞

dω′
Im[F+ij (ω)F

′
mn(ω

′)]

ω + ω′ + eV + i0

}
.

(A3)

For a quasiparticle current

J1 = ϕ3(G11,G
′
11) J2 = ϕ3(G11,G

′
12) J3 = ϕ3(G12,G

′
11)

J4 = ϕ3(G12,G
′
12) J5 = ν ′ϕ3(G11,G

′
33) J6 = ν ′ϕ3(G12,G

′
33)

J7 = νϕ3(G33,G
′
11) J8 = νϕ3(G33,G

′
12) J9 = νν ′ϕ3(G33,G

′
33)

(A4)

ϕ3(Gij ,G
′
mn) =

1

2π3eR(1+ ν)(1+ ν ′) Re

{∫ ∞
−∞

dω
∫ ∞
−∞

dω′
Im[Gij (ω)G

′
mn(ω

′)]
ω − ω′ − eV + i0

}
.

(A5)

Appendix B

We introduce auxiliary functions:

N1(ω,1) = θ(1− |ω|)(12− ω2)−1/2 N2(ω,1) = θ(|ω| −1)(ω2−12)−1/2 (B1)

whereθ(x) is the Heaviside theta-function, and use the following notation:

81(11,12) = 12

2eR(1+ ν)2
∫ ∞
−∞

dω tanh
|ω|
2T

× [N1(ω − eV,11)N2(ω,12)+N2(ω,11)N1(ω + eV,12)] (B2)

82(11,12) = − 12

2eR(1+ ν)2
∫ ∞
−∞

dω

(
tanh

ω − eV
2T

− tanh
ω

2T

)
× sgn(ω − eV ) sgnωN2(ω − eV,11)N2(ω,12) (B3)

83(11,12) = − 1

2eR(1+ ν)2
∫ ∞
−∞

dω

(
tanh

ω − eV
2T

− tanh
ω

2T

)
× |ω − eV | |ω|N2(ω − eV,12)N2(ω,11) (B4)

84(11,12) = 1

2eR(1+ ν)
∫ ∞
−∞

dω

(
tanh

ω − eV
2T

− tanh
ω

2T

)
× sgn(ω − eV ) |ω|N2(ω − eV,12)N2(ω,11). (B5)

Then the amplitudes of the various current components obtained from the equations of
appendix A, with the help of the formulas (25)–(31), in the symmetrical case take the form

Ims1 = 8m(D,D) Ims2 = 2ν8m(D,1) Ims3 = ν28m(1,1) (m = 1, 2) (B6a)

Js1 = 83(D,D) Js2 = (6/1)282(D,D)

Js3 = 2ν83(D,1) Js4 = ν283(1,1).
(B6b)

In the non-symmetrical case we obtain in a similar way

Imns1 = (1+ ν)1BCS1
−18m(D,1BCS)

Imns2 = ν(1+ ν)1BCS1
−18m(1,1BCS)

(m = 1, 2) (B7a)

Jns1 = (1+ ν)83(D,1BCS)

Jns2 = 684(1BCS,D)

Jns3 = ν(1+ ν)83(1,1BCS).

(B7b)

For both casesm = 1 corresponds to Josephson amplitudes, andm = 2 to interference
current amplitudes.
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Appendix C

In the case of broken symmetry for the symmetrical junction when6 > 0 on the left-hand
side and6 < 0 on the right-hand side of the junction, the components of the quasiparticle
current have the form

Js1 = 83(D,D) Js2 = −(6/1)282(D,D)

Js3 = 2ν83(D,1) Js4 = ν283(1,1)

Js5 = 2|6|84(D,D)/(1+ ν) Js6 = 2ν|6|84(1,D)/(1+ ν).
(C1)
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Grüner G 1988Rev. Mod. Phys.60 1129
[6] Thorne R 1996Phys. Today49 (5) 42
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